IN SITU TISSUE ENGINEERING WITH INTEGRA EMBRYONIC HISTOGENESIS IN REGENERATIVE MATRICES

Marc E. Gottlieb, MD, FACS Phoenix, AZ

INGEGNERIA DEI TESSUTI IN SITU CON INTEGRA Istogenesi Embrionale in Matrici Rigenerativa

ETOPINO LIONALOR LIONALOR LE

University of Arizona

ARIOMODICA

PRESENTATION IS ON THE WEBSITE

www.arimedica.com

INFLAMMATORY WOUND HEALING - YS MATRIX HISTOGENESIS

REPAIR, RECONSTRUCTION, AND PATHOLOGICAL RISKS - THE

INADEQUACIES

OF ORDINARY SURGERY

arimedica.com

PARADIGMS OF CONVENTIONAL WOUND CLOSURE & RECONSTRUCTION

All depend on normal post-inflammatory wound healing.

Topical
Care
&
Natural
Contraction

1 - Simple Repairs

2 - Grafts

3-Flaps

WOUND CLOSURE AND ESSENTIAL COVERAGE

When flaps are required but not useable, matrices work.

Why Integra D

Perché Integra?

SCAR CONTRACTURES AND SEQUELAE OF WOUNDS

Complications of normal post-inflammatory wound healing.

THE CAVEATS OF CONVENTIONAL WOUND CLOSURE

Circumstances where normal surgery is impossible or ill-advised.

SOLVING PROBLEMS WITH REGENERATIVE MATRICES

Circumstances where normal surgery is impossible or ill-advised.

IN SITU TISSUE ENGINEERING - WITH REGENERATIVE MATRICES

A PARADIGM OF SURGICAL WOUND REPAIR AND RECONSTRUCTION

INDEPENDENT

OF AND SUPPRESSES NORMAL POST-INFLAMMATORY WOUND HEALING

INTEGRA: A Bilaminate Surface Implant

Layer 1 CGM - Collagen-GAG Matrix

(type 1 collagen, chondroitin-C)

Layer 2 Silicone rubber "epidermis"

Crucial properties that confer clinical advantage

- (1) Not alive, so tolerant of adverse conditions.
- (2) Complete suppression of inflammation.
- (3) Control of residual pathology.
- (4) No inflammation ---> no wound healing ---> no scar.
- (5) Embryonic dermatogenesis ---> dermal equivalent.
- (4) No scar ---> no contraction.
- (5) Tangential histoconduction.

1 - high quality acute artificial skin

2 - dermal regenerant & agent of reconstruction

INTEGRA ARRESTS INFLAMMATION

It hides the wound from the host, and it stops destructive events.

INTEGRA STOPS POST-INFLAMMATORY REPAIR

No wound healing means no scar nor its sequelae.

THE CELLULAR AND BIOPHYSICAL BASIS OF

INTEGRA'S EFFECTS

CAN BE IDENTIFIED HISTOLOGICALLY

- 3 ···

PHYSIOLOGY AND ANATOMY - OF INTEGRA HISTOGENESIS

COMPARISON TO NORMAL WOUND HEALING

HISTOLOGIC BASIS OF ITS BIOLOGICAL PROPERTIES

EMBRYONIC

MODE OF TISSUE FORMATION

Post-Inflammatory Wound Healing

Natural Biology and Classical Methods of Surgery

MATRIX HISTOGENESIS - INTEGRA

Technological method to prevent undesirable effects of normal wound healing by inducing embryonic tissue formation.

Stimulated IV a Angiocytes & Histogenetic Cells Normal

IV b
Angiogenesis &
Granulation Tissue

V a
Fibroblasts &
Connective Matrix

VII Epithelialization & Closure

VIII a Maturation Consolidation of fibrous scar

VIII b
Maturation

Epidermal papillation

VIII c Maturation Involution

Syncytial transformation

Syncytial transformation

Syncytial clusters

Holbrook KA, Smith LT: Ultrastructural aspects of human skin during the embryonic, fetal, premature, neonatal, and adult periods of life. Birth Defects 17: 9-38, 1981.

Normal angiocytes prior to Integra

Stimulation of perivascular cells

Domain maturation

Late maturation

"... a watery, cellular network of mesenchyme that is joined through long slender pseudopodia processes and specialized intercellular junctions into a syncytium..."

- 41 -

INTEGRA REGENERATION

CORRELATION WITH PRIMARY

VARIANCES FROM ORDINARY
INFLAMMATORY-FIBROUS
WOUND HEALING

EMBRYONIC

TISSUE FORMATION

arrival recognition stimulus activation organization early structure advanced structure

INFLAMMATORY REPAIR

inflammatory angiogenesis: unregulated open loop, forced by extrinsic cells

result of unregulated angiogenesis:
highly proliferative, excess vascular density

granulation tissue: dense red color from high blood volume in excess vessels

INTEGRA HISTOGENESIS

embryonic angiogenesis: closed loop process, regulated by intrinsic tissue

regulation by normal tissue development:
precise and efficient vascular density

embryonic tissues: white or pink from lower blood volume & proper vessel density

PROLIFERATION auto-amplifying, hyper-density, open loop

involution of excess, gradual thinning back to reference

Integra Histogenesis

GRADUALLY BUILD CORRECT MODEL

proper density, closed loop, regulated

MATURATION

no involution, gradual remodel to reference anatomy

REPAIR - VS - HISTOGENESIS

CONDITION	INFLAMMATORY REPAIR	INTEGRA HISTOGENESIS	EMBRYONIC DERMATOGENESIS and FETAL WOUND REPAIR
INFLAMMATION	inflammation triggers the process	inflammation is suppressed	no inflammation
CONTROL CELLS	chemotactically summoned marrow-derived cells	resident local mesenchyme (or possibly marrow derived patrol cells)	locally developing mesenchyme
CONTROL CELL INITIATION	extrinsic direction by summoning cells	intrinsic direction by arriving cells	intrinsic direction by resident cells
TYPE OF CELL RESPONSE	defensive	non-defensive, histogenetic	non-defensive, histogenetic
TYPE OF HEALING	wound module inflammatory repair	generative (embryonic) histogenesis	generative and regenerative histogenesis
DYNAMICAL CONTROL SYSTEM	open-loop, controllers extrinsic to tissue	closed-loop, controllers intrinsic to tissue	closed-loop, controllers intrinsic to tissue
ORDER OF HISTOGENESIS	angiogenesis leads, fibroblasts follow	fibroblasts lead, angiogenesis follows	dermatoblasts lead, angiogenesis follows
VASCULOGENIC DYNAMICS	target or gradient angiogenesis	distributed field angiogenesis	distributed field angiogenesis
VASCULAR DENSITY	hyperdensity angiogenesis	correct density angiogenesis	correct density angiogenesis
TYPE OF HISTOGENETIC CELL	classic fibroblasts	syncytial fibroblasts	syncytial fibroblasts (dermatoblasts)
COLLAGEN ARCHITECTURE	dense, non-compliant	percolated, distensible	percolated, distensible
SCAR CONTRACTION	prominent	absent	absent
STAR CHEMICAL	collagen (structural)	glycosaminoglycans (process regulator)	glycosaminoglycans (process and structure)

IN SITU TISSUE ENGINEERING WITH REGENERATIVE MATRICES

Integra · Collagen-GAG Matrix

Normal post-inflammatory proliferative wound healing is cancelled.

Embryonic histogenesis & dermatogenesis is induced.

These materials turn on a genetic or biodynamical "subroutine" that is key to embryonic and fetal development, but which is turned off at birth, not normally meant to appear again.

Aminoglycans are key.

A new paradigm of surgical wound closure that is independent of normal wound healing, and succeeds where conventional surgery fails.

Not an alternative, but the indicated option for problems of wound and scar pathology.

